force parallelogram - definição. O que é force parallelogram. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:     

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é force parallelogram - definição

MATHEMATICAL THEOREM
Parallelogram identity; Parallelogram equation; Parallelogram rule; Parallelogram equality; Parallelogram Law
  • thumb
  • Vectors involved in the parallelogram law.

Parallelogram of force         
  • Figure 2: Parallelogram of velocity
ADDITION OF VECTORS
Parallelogram of forces; Polygon of force
The parallelogram of forces is a method for solving (or visualizing) the results of applying two forces to an object.
Lorentz force         
  • Lorentz' theory of electrons. Formulas for the Lorentz force (I, ponderomotive force) and the [[Maxwell equations]] for the [[divergence]] of the [[electrical field]] E (II) and the [[magnetic field]] B (III), ''La théorie electromagnétique de Maxwell et son application aux corps mouvants'', 1892, p. 451. ''V'' is the velocity of light.
  • Lorentz force -image on a wall in Leiden
  • ''dV''}} and varies throughout the continuum.
  • '''B'''}} field]] vary in space and time.
  • Right-hand rule for a current-carrying wire in a magnetic field ''B''
FORCE EXERTED ON A CHARGE IN ELECTROMAGNETIC FIELD
Lorentz equation; Magnetic force; Lorenz force; VxB force; Lorentz Force Law; Lorentz force law; Lorentz Force; Magnetic Force; Lorentz forces; Lorentz law; Laplace force; F=qv X B
In physics (specifically in electromagnetism) the Lorentz force (or electromagnetic force) is the combination of electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge moving with a velocity in an electric field and a magnetic field experiences a force of
Magnetic Force         
  • Lorentz' theory of electrons. Formulas for the Lorentz force (I, ponderomotive force) and the [[Maxwell equations]] for the [[divergence]] of the [[electrical field]] E (II) and the [[magnetic field]] B (III), ''La théorie electromagnétique de Maxwell et son application aux corps mouvants'', 1892, p. 451. ''V'' is the velocity of light.
  • Lorentz force -image on a wall in Leiden
  • ''dV''}} and varies throughout the continuum.
  • '''B'''}} field]] vary in space and time.
  • Right-hand rule for a current-carrying wire in a magnetic field ''B''
FORCE EXERTED ON A CHARGE IN ELECTROMAGNETIC FIELD
Lorentz equation; Magnetic force; Lorenz force; VxB force; Lorentz Force Law; Lorentz force law; Lorentz Force; Magnetic Force; Lorentz forces; Lorentz law; Laplace force; F=qv X B
The forces of attraction and repulsion exercised by a magnet. By Ampere's theory it is identical with the forces of attraction and repulsion of electric currents.

Wikipédia

Parallelogram law

In mathematics, the simplest form of the parallelogram law (also called the parallelogram identity) belongs to elementary geometry. It states that the sum of the squares of the lengths of the four sides of a parallelogram equals the sum of the squares of the lengths of the two diagonals. We use these notations for the sides: AB, BC, CD, DA. But since in Euclidean geometry a parallelogram necessarily has opposite sides equal, that is, AB = CD and BC = DA, the law can be stated as

If the parallelogram is a rectangle, the two diagonals are of equal lengths AC = BD, so

and the statement reduces to the Pythagorean theorem. For the general quadrilateral with four sides not necessarily equal, where x {\displaystyle x} is the length of the line segment joining the midpoints of the diagonals. It can be seen from the diagram that x = 0 {\displaystyle x=0} for a parallelogram, and so the general formula simplifies to the parallelogram law.